Hack Object Detector is just Like Training Neural Networks

Jay Xiong, Wang Yang, Liu Yan, Hao Xin, Wei Tao

Presented at HITB GSEC 2019

About me

- · Jay Xiong,
- Security Researcher
- League of Legends/Dead by Daylight Player

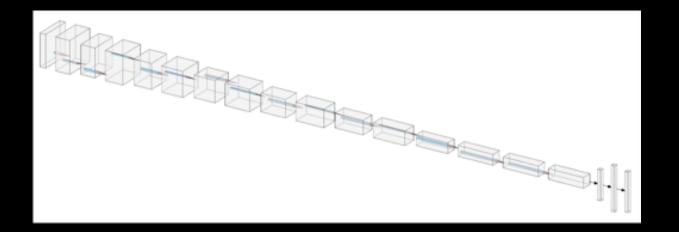
Agenda

- Background on object detector deception(ODD)
- Object Detector Deception Analysis
- Use Trick to Enhance ODD
- One More Thing

Some concepts

- What is object detector?
- What is adversarial example?
- What is object detector deception?

What is object detector?



Faster YOLO v2 model architecture

def build_networks(self): if colf disp compare

if self.disp_console : print "Building YOLO_tiny graph..." self.x = tf.placeholder('float32', [None, 448, 448, 3]) self.conv_1 = self.conv_layer(1,self.x,16,3,1) self.pool_2 = self.pooling_layer(2,self.conv_1,2,2) self.conv_3 = self.conv_layer(3,self.pool_2,32,3,1) self.pool_4 = self.pooling_layer(4, self.conv_3, 2, 2) self.conv_5 = self.conv_layer(5,self.pool_4,64,3,1) self.pool_6 = self.pooling_layer(6, self.conv_5, 2, 2) self.conv_7 = self.conv_layer(7,self.pool_6,128,3,1) self.pool_8 = self.pooling_layer(8, self.conv_7,2,2) self.conv_9 = self.conv_layer(9,self.pool_8,256,3,1) self.pool_10 = self.pooling_layer(10, self.conv_9,2,2) self.conv_11 = self.conv_layer(11,self.pool_10,512,3,1) self.pool_12 = self.pooling_layer(12, self.conv_11, 2, 2) self.conv_13 = self.conv_layer(13,self.pool_12,1024,3,1) self.conv_14 = self.conv_layer(14,self.conv_13,1024,3,1) self.conv_15 = self.conv_layer(15,self.conv_14,1024,3,1) self.fc_16 = self.fc_layer(16,self.conv_15,256,flat=True,linear=False) self.fc_17 = self.fc_layer(17,self.fc_16,4096,flat=False,linear=False) #skip dropout_18 self.fc_19 = self.fc_layer(19, self.fc_17, 1470, flat=False, linear=True) self.sess = tf.Session() self.sess.run(tf.initialize_all_variables()) self.saver = tf.train.Saver() self.saver.restore(self.sess,self.weights_file) if self.disp_console : print "Loading complete!" + '\n'

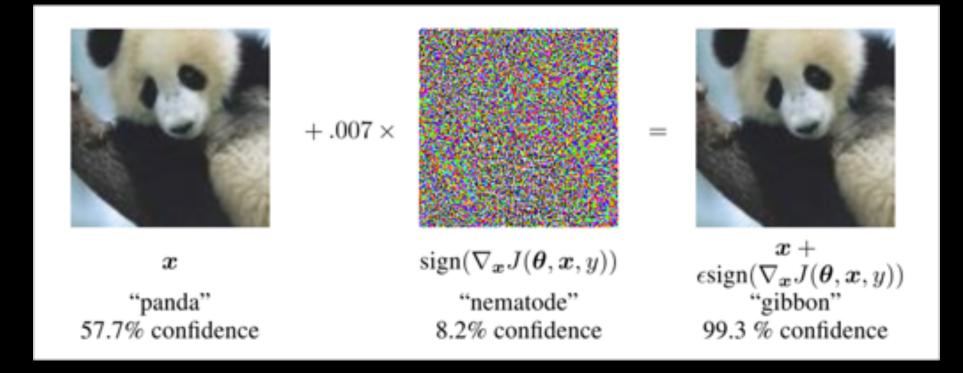
Cited from github user gliese581gg

https://github.com/gliese581gg/YOLO_tensorflow/bl ob/master/YOLO_tiny_tf.py

What is object detector?

Terminator 1, 1984, https://www.youtube.com/watch?v=9MeaaCwBW28

What is adversarial example?



Ian J. Goodfellow, etc, EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, ICLR 2015,

https://arxiv.org/abs/1412.6572

Object detector deception(ODD)

object detector

combined with

adversarial example

Figure 4: Output of the extended RP₂ algorithm to attack YOLO v2 using poster and sticker attacks.

Kevin Eykholt, etc, Physical Adversarial Examples for Object Detectors, USENIX WOOT 2018

Adversarial Threat to DNN

• A real threat in deep learning application scenario



Physical attack against YOLO-V3 Baidu X-lab demonstrated on Blackhat Euro 2018

Related work on object detector deception(ODD)



CVPR Workshop 2019, [*], obtained from attacking test batch distribution

https://www.youtube.com/watch?v=MIbFvK2S9g8

Generated from attacking prediction score of a single image

https://github.com/advboxes/AdvBox

[*] Simen Thys, Wiebe Van Ranst, Toon Goedemé, Fooling automated surveillance cameras: adversarial patches to attack person detection. CVPR Workshop 2019,

Get down to what's happened

 \cdot The neural network training process.

The neural network training process is to search for a set of weights, which minimize the difference between model prediction and training/test label distribution. It can be summarized as follows:

Training Loss is $J(y_t = h_{\theta}(x), y_s)$, $y_s \sim D_s$, find θ , $y = h(\theta, x)$, st. $(x, y) \sim D_s$

• The ODD process

The ODD process is an "odd" process compared to how we usually a neural network, instead of trying to find a set of weights to make model prediction more precise, the ODD is a reversed process.

With model weights remain unchanged, we try to find a robust input δ to drift model prediction far from label distribution. It can be summarized as follows:

Attack loss is $J(y_t = h_{\theta}(x'), y)$, find a or a set of $\delta', y' = h_{\theta}(x + \delta')$, st. $(x', y') \sim D_{target}$ we would like δ to be as small as possible.

Object Detector Deception Modeling

Let's say:

convolution layer: $conv_{l(x_{l-1})} = w_{l-1}x_{l-1}+b_{l-1}$ leaky relu activation: $h_{l(x_{l-1})} = relu_leaky(x_{l-1})$ maxpooling layer: $m_{l(x_{l-1})} = maxpool(x_{l-1})$ we can obtain their gradients by:

$$\frac{\partial conv_{l(x_{l-1})}}{\partial x_{l-1}} = w_{l-1}^{T}$$

$$\frac{\partial h_{l(x_{l-1})}}{\partial x_{l-1}} = np.where(x_{l-1} > 0, 1, 0.1x_{l-1}) = h_{l}$$

$$\frac{\partial m_{l(x_{l-1})}}{\partial x_{l-1}} = np.where(x_{l-1} > 0, 1, 0) = m_{l}$$

let's name y_t is the score to bend, we have the inference from the last conv layer. $y_t = w_l x_l + b_l$

$$dy_{t} = dconv_{l+1(x_{l})} = d(w_{l}x_{l}+b_{l})$$

= $w_{l}dx_{l} = w_{l}dm_{l}(x_{l-1}) = w_{l}m_{l}\odot dx_{l-1}$
= $w_{l}m_{l}\odot d(h_{l-1}(x_{l-2})) = w_{l}m_{l}\odot h_{l-1}\odot dx_{l-2}$
= $w_{l}m_{l}\odot h_{l-1}\odot dconv_{l-2(x_{l-3})}$
...
= $w_{l}m_{l}\odot h_{l-1}\odot w_{l-3}m_{l-3}\odot h_{l-4}\odot w_{l-6} \cdots dx_{img}$
= $x_{l}x_{l}x_{l} \cdots x_{l}x_{l}$

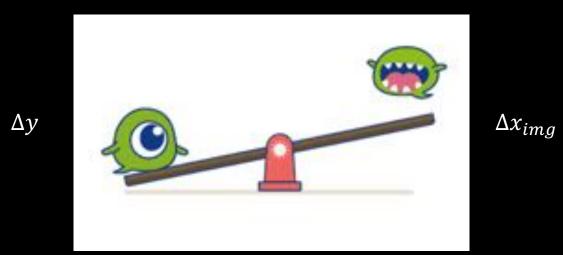
$$= tr(r_l r_{l-1} r_{l-2} \cdots r_1 dx_{img})$$

→
$$\Delta y = tr(r_l r_{l-1} \dots r_l \Delta x_{img})$$

→ $\frac{\partial y_t}{\partial x_{img}} = (r_l r_{l-1} \dots r_1)^T$

similarly:

Object Detector Deception Modeling



$$\frac{\partial y_t}{\partial x_{img}} = (r_l r_{l-1} \dots r_l)^T$$
$$\frac{\partial x_{img}}{\partial y_t} = (R_1 R_2 \dots R_l)^T$$

Object Detector Deception Modeling Adversarial Sticker = Perturbation = $x'=x + \delta'$

VS

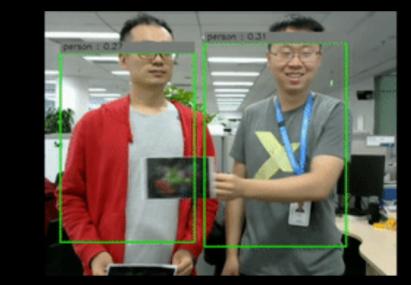
generated from attacking prediction score of a single image Expectation of a single target case

 $\Delta y = tr(r_l r_{l-1} \dots r_l \Delta x_{img})$

generated from attacking a set of images

Expectation over Testing Batch (eotb)

 $\Delta y = tr(r_l r_{l-1} \dots r_l \Delta \overline{x}_{img})$



Why not use tricks in neural networks training for ODD?

Neural Networks Training

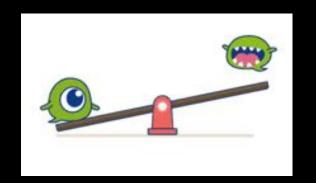
Object Detector Deception

Use proper weights initialization for better regression and local optimal?

Use proper pixel value initialization for better physical deception robustness over environmental interference ?

The trick: Adversarial Initialization

Why does it work:



when training: $\uparrow \Delta y = tr(r_l r_{l-1} \dots r_l \Delta \overline{x}_{img}) = > \uparrow \Delta x_{img}$

when attacking: $\uparrow \Delta x_{img} = \Rightarrow \uparrow \Delta y = tr(r_l r_{l-1} \dots r_l \Delta \overline{x}_{img})$

note: Δx_{img} (perturbation) is the accumulation of model gradients

Use Adversarial Initialization to Enhance ODD

Experiment Setting:

Cited from github user gliese581gg

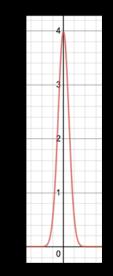
https://github.com/gliese581gg/YOLO_tensorflow/bl ob/master/YOLO_tiny_tf.py

Use Adversarial Initialization to Enhance ODD

Experiment Setting:

- \cdot End to end differentiable object detector faster yolo v2
- · 1200+ images containing people
- \cdot Adam optimizer lr = 1e-2
- · Loss function Loss = $C_{people} + \lambda_1 \|\delta\|_2 + \lambda_2 \|d\delta\|_2$

original
init_inter = tf.constant_initializer(0.001*np.random.random([1,448,448,3]))

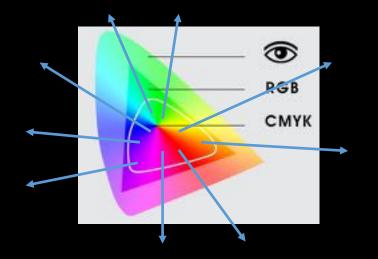


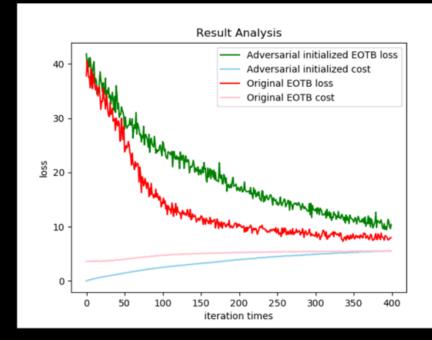
improved
think of it, we want ad sticker starts at somewhere easy
init_inter = tf.constant_initializer(0.7*np.random.normal(scale=0.8,size=[1,448,448,3]))



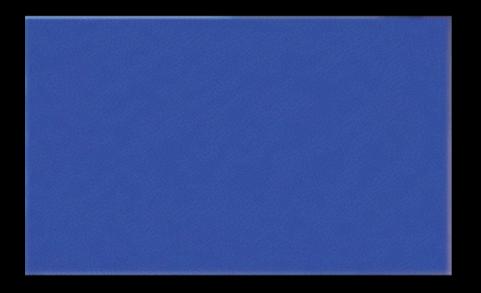
The physical adversarial robustness is not free.

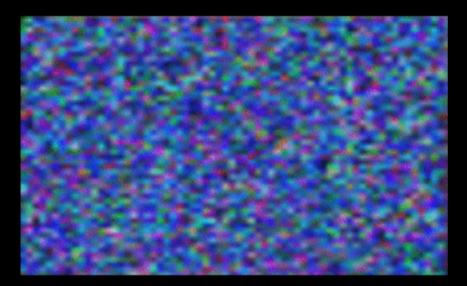
- the cost of adversarial initialization: less optimal minimum
- at every iteration, larger y than original
- result in more color-saturated adversarial sticker





Time-lapse photography:





Original

Improved

Effectiveness in physical world:

The experiment:

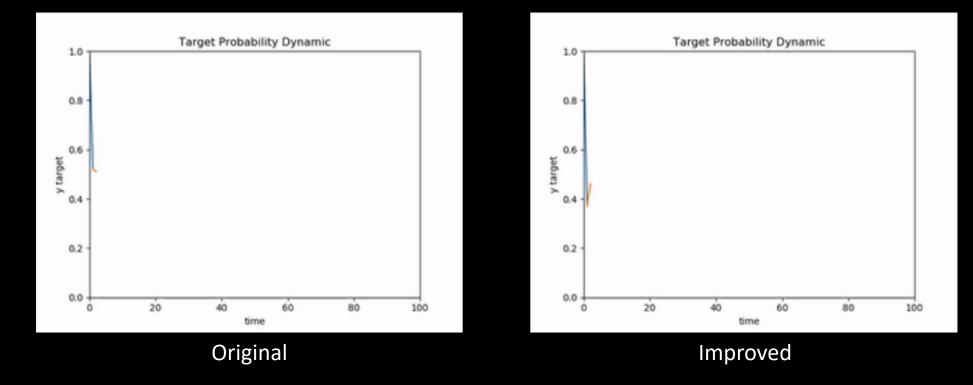
showing or blocking the sticker

input image

faster yolo v2

output confidence

Effectiveness in physical world:



One More thing

How to craft your own adversarial sticker on your own object detector?

https://github.com/advboxes/AdvBox

Presented at HITB GSEC 2019

