Security Design & High-Risk Users

Eleanor Saitta @Dymaxion

HITB GSEC 2015
Security is not about computers.
People built computers to accomplish tasks.

People built more computers and networked them to accomplish more tasks.

Those computers got compromised.

People paid us to fix the problem.

We made the mistake of thinking they meant us to fix the computers.
Having made this mistake, we built an entire industry around solving the wrong problem.

People built yet more computers and networks. We realized we couldn’t secure them individually and started looking at probabilities and scaling. We never did fix the problem.
Security is the set of activities that reduce the likelihood of a set of adversaries successfully frustrating the goals of a set of users.
The ability to define and determine what a technical system will and will not do is necessary but not sufficient to determine whether it is secure. Defining security for a system means understanding what your humans want.
Security design is the process of understanding user culture, goals, and workflows, organizational technical capabilities, and adversary capabilities and dispositions and synthesizing a satisficing solution.
Outcomes are messy
Understanding the Operations Process

• Planning in the presence of an adversary
• OODA Loops
• Cognitive overhead
• Operational utility
• Functional deployability
Worse is Better Efficacy
Invariants

Accuracy
Adaptability
Agility
Anticipation
Assurance
Availability
Awareness
Capacity
Coherence
Concealment
Confidentiality
Continuity
Control
Completeness
Cooperation
Coordination
Deception
Deployability
Deniability
Depth
Deterrence
Discipline
Dispersion
Economy
Efficacy
Endurance
Exposure
Identifiability
Initiative
Integration
Integrity
Interoperability
Goodwill
Mobility
Nonrepudiation
Objectivity
Precision
Predictability
Readiness
Receptivity
Relevancy
Resilience
Responsiveness
Simplicity
Simultaneity
Surprise
Survivability
Synchronization
Trust
Timeliness
Susceptibility
Uncertainty
Unlinkability
Unpredictability
Velocity
Design

- Understanding, documenting, and communicating constraints and capabilities
- Synthesize and validate potential solutions
- Communicate and justify those solutions
- Support the development process & prevent drift
Participatory Design

- Recognize users as authorities on their goals
- Deep cultural engagement for complex scenarios
- Surface tacit and embodied knowledge
- Build long-term community trust
- Short-circuit long development processes
- Create blended countermeasures
- Minimize team ego
Mapping the Security Task

- Requirements Analysis
- Architectural Design
- Development
- Testing
- Operations
Mapping the Security Task

Requirements Analysis
Architectural Design
Development
Testing
Operations

Architectural Analysis
Standards & Frameworks
Security Testing
Monitoring & Incident Response
Mapping the Security Task

- Requirements Analysis
- Architectural Design
- Development
- Testing
- Operations

Threat Modeling

- Architectural Analysis
- Standards & Frameworks
- Security Testing
- Monitoring & Incident Response
Mapping the Security Task

- Requirements Analysis
- Architectural Design
- Development
- Testing
- Operations

Threat Modeling

Adversary Modeling
- Architectural Analysis
- Standards & Frameworks
- Security Testing
- Monitoring & Incident Response
Mapping the Security Task
Practical Process Change

• Find your UX designers and product managers
• Insist on coming to all of their meetings
• Learn their language and process
• Learn what your users are actually trying to do
• Design requirements-level security support
• Document and solidify once you have results
• Give yourself room to fail
• Work across your org to center user goals
Thank you!

ella@dymaxion.org

Support my security research and writing:

http://patreon.com/dymaxion

HITB GSEC 2015 Security Design and High-Risk Users